首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   125篇
  免费   2篇
测绘学   1篇
大气科学   1篇
地球物理   37篇
地质学   31篇
海洋学   10篇
天文学   41篇
自然地理   6篇
  2021年   4篇
  2020年   1篇
  2018年   3篇
  2017年   1篇
  2016年   1篇
  2014年   6篇
  2013年   1篇
  2012年   2篇
  2011年   3篇
  2010年   8篇
  2009年   3篇
  2008年   2篇
  2007年   5篇
  2006年   4篇
  2005年   1篇
  2004年   6篇
  2003年   9篇
  2002年   3篇
  2001年   5篇
  2000年   4篇
  1999年   10篇
  1998年   5篇
  1997年   2篇
  1996年   3篇
  1995年   1篇
  1994年   2篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1987年   3篇
  1986年   2篇
  1985年   2篇
  1984年   2篇
  1983年   1篇
  1981年   2篇
  1979年   4篇
  1977年   1篇
  1976年   1篇
  1975年   1篇
  1974年   2篇
  1973年   1篇
  1972年   2篇
  1971年   1篇
  1969年   1篇
  1963年   1篇
  1948年   1篇
排序方式: 共有127条查询结果,搜索用时 359 毫秒
91.
Detailed numerical flow and radionuclide simulations are used to predict the flux of radionuclides from three underground nuclear tests located in the Climax granite stock on the Nevada Test Site. The numerical modeling approach consists of both a regional-scale and local-scale flow model. The regional-scale model incorporates conceptual model uncertainty through the inclusion of five models of hydrostratigraphy and five models describing recharge processes for a total of 25 hydrostratigraphic–recharge combinations. Uncertainty from each of the 25 models is propagated to the local-scale model through constant head boundary conditions that transfer hydraulic gradients and flow patterns from each of the model alternatives in the vicinity of the Climax stock, a fluid flux calibration target, and model weights that describe the plausibility of each conceptual model. The local-scale model utilizes an upscaled discrete fracture network methodology where fluid flow and radionuclides are restricted to an interconnected network of fracture zones mapped onto a continuum grid. Standard Monte Carlo techniques are used to generate 200 random fracture zone networks for each of the 25 conceptual models for a total of 5,000 local-scale flow and transport realizations. Parameters of the fracture zone networks are based on statistical analysis of site-specific fracture data, with the exclusion of fracture density, which was calibrated to match the amount of fluid flux simulated through the Climax stock by the regional-scale models. Radionuclide transport is simulated according to a random walk particle method that tracks particle trajectories through the fracture continuum flow fields according to advection, dispersion and diffusional mass exchange between fractures and matrix. The breakthrough of a conservative radionuclide with a long half-life is used to evaluate the influence of conceptual and parametric uncertainty on radionuclide mass flux estimates. The fluid flux calibration target was found to correlate with fracture density, and particle breakthroughs were generally found to increase with increases in fracture density. Boundary conditions extrapolated from the regional-scale model exerted a secondary influence on radionuclide breakthrough for models with equal fracture density. The incorporation of weights into radionuclide flux estimates resulted in both noise about the original (unweighted) mass flux curves and decreases in the variance and expected value of radionuclide mass flux.  相似文献   
92.
A study of the coseismic displacement and fling pulse recorded during the Mw 6.5 30 October 2016 Central Italy earthquake is presented. The near-field has been well documented, owing to the deployment of additional strong-motion stations following the earlier events of the 2016 Central Italy seismic sequence. As a result, there are numerous stations with evidence of coseismic displacement and fling pulse. In this study, 25 records with strike distance of less than 25 km and rupture distance under 28 km are considered. Approximate coseismic displacements have been recovered by a bilinear model to remove the low frequency noise in the records. The bilinear noise model uses two linear regression segments on the velocity trace to remove baseline offsets. After obtaining the coseismic displacement time series, the fling pulse period is examined. Existing methods of obtaining the fling pulse period are reviewed and a proposed algorithm is considered for automatic fling pulse detection. Both horizontal and vertical fling periods are obtained, unlike many studies which neglect the vertical fling. It is shown that the fling pulse period is highly variable (~?2–16 s) in the near-field region but exhibits some trends with various site-to-source distances.  相似文献   
93.
Hydrofracture systems are being increasingly recognized within subglacial to ice‐marginal settings and represent a visible expression of the passage of pressurized meltwater through these glacial environments. Such structures provide a clear record of the fluctuating hydrostatic pressure and of the resulting brittle fracturing of the host sediment/bedrock and the pene‐contemporaneous liquefaction and introduction of sediment‐fill. A detailed macro‐ and microstructural study of a hydrofracture system cutting Devonian sandstone bedrock exposed at the Meads of St John, near Inverness (NE Scotland), has revealed that this complex multiphase system was active over a prolonged period and accommodated several phases of fluid flow. The main conduits that fed the hydrofracture system are located along bedding within the sandstone, with the site of the wider, steeply inclined to subvertical, transgressive linking sections being controlled by the contemporaneous development of high‐angle fractures and normal faults, the latter occurring in response to localized extension within the bedrock. A comparison with published engineering hydraulic fracturing data indicates that the various stages of sediment‐fill deposited during a flow event can be directly related to the fluctuation in overpressure during hydrofracturing. A model is proposed linking the evolution of this hydrofracture system to the retreat of the overlying Findhorn glacier. The results of this study also indicate that the development and repeated reactivation of subglacial hydrofracture systems can have a dramatic effect on the permeability of the bed, influencing the potential for overpressure build‐up within the subglacial hydrogeological system, and facilitating the migration of meltwater beneath glaciers and ice sheets.  相似文献   
94.
Aeromagnetic surveys help reveal the geometry of Precambrian terranes through extending the mapping of structures and lithologies from well-exposed areas into areas of younger cover. Continent-wide aeromagnetic compilations therefore help extend geological mapping beyond the scale of a single country and, in turn, help link regional geology with processes of global tectonics. In Africa, India and related smaller fragments of Gondwana, the margins of Precambrian crustal blocks that have escaped (or successfully resisted) fracture or extension in Phanerozoic time can often be identified from their aeromagnetic expression. We differentiate between these rigid pieces of Precambrian crust and the intervening lithosphere that has been subjected to deformation (usually a combination of extension and strike-slip) in one or more of three rifting episodes affecting Africa during the Phanerozoic: Karoo, Early Cretaceous and (post-) Miocene. Modest relative movements between adjacent fragments in the African mosaic, commensurate with the observed rifting and transcurrent faulting, lead to small adjustments in the position of sub-Saharan Africa with respect to North Africa and Arabia. The tight reassembly of Precambrian sub-Saharan Africa with Madagascar, India, Sri Lanka and Antarctica (see animation in http://kartoweb.itc.nl/gondwana) can then be extended north between NW India and Somalia once the Early Cretaceous movements in North Africa have been undone. The Seychelles and smaller continental fragments that stayed with India may be accommodated north of Madagascar. The reassembly includes an attempt to undo strike-slip on the Southern Trans-Africa Shear System. This cryptic tectonic transcontinental corridor, which first formed as a Pan-African shear belt 700–500 Ma, also displays demonstrable dextral and sinistral movement between 300 and 200 Ma, not only evident in the alignment of the unsuccessful Karoo rifts now mapped from Tanzania to Namibia but also having an effect on many of the eventually successful rifts between Africa-Arabia and East Gondwana. We postulate its continuation into the Tethys Ocean as a major transform or megashear, allowing minor independence of movements between West Gondwana (partnered across the Tethys Ocean with Europe) and East Gondwana (partnered with Asia), Europe and Asia being independent before the 250 Ma consolidation of the Urals suture. The relative importance of primary driving forces, such as subduction ‘pull’, and ‘jostling’ forces experienced between adjacent rigid fragments could be related to plate size, the larger plates being relatively closely-coupled to the convecting mantle in the global scheme while the smaller ones may experience a preponderance of ‘jostling’ forces from their rigid neighbours.  相似文献   
95.
Runoff from boreal hillslopes is often affected by distinct soil boundaries, including the frozen boundary and the organic‐mineral boundary (OMB), where highly porous and hydraulically conductive organic material overlies fine‐grained mineral soils. Viewed from the surface, ground cover appears as a patchwork on sub‐meter scales, with thick, moss mats interspersed with lichen‐covered, silty soils with gravel inclusions. We conducted a decameter‐scale subsurface tracer test on a boreal forest hillslope in interior Alaska to quantify locations and mechanisms of transport and storage in these soils, focusing on the OMB. A sodium bromide tracer was added as a slug addition to a pit and sampled at 40 down‐gradient wells, screened primarily at the OMB and within a 7 × 12 m well field. We maintained an elevated head in the injection pit for 8.5 hr to simulate a storm. Tracer breakthrough velocities ranged from <0.12 to 0.93 m hr?1, with the highest velocities in lichen‐covered soils. After 12 hr and cessation of the elevated head, the tracer coalesced and was only detected in thick mosses at a trough in the OMB. By 24 hr, approximately 17% of the tracer mass could be accounted for. The majority of the mass loss occurred between 4 and 12 hr, while the tracer was in contact with lichen‐covered soils, which is consistent with tracer transport into deeper flow paths via preferential flow through discrete gravelly areas. Slow breakthroughs suggest that storage and exchange also occurred in shallow soils, likely related to saturation and drainage in fine‐grained mineral soils caused by the elevated hydraulic head. These findings highlight the complex nature of storage and transmission of water and solutes from boreal hillslopes to streams and are particularly relevant given rapid changes to boreal environments related to climate change, thawing permafrost and increasing fire severity.  相似文献   
96.
This study evaluates alternative groundwater models with different recharge and geologic components at the northern Yucca Flat area of the Death Valley Regional Flow System (DVRFS), USA. Recharge over the DVRFS has been estimated using five methods, and five geological interpretations are available at the northern Yucca Flat area. Combining the recharge and geological components together with additional modeling components that represent other hydrogeological conditions yields a total of 25 groundwater flow models. As all the models are plausible given available data and information, evaluating model uncertainty becomes inevitable. On the other hand, hydraulic parameters (e.g., hydraulic conductivity) are uncertain in each model, giving rise to parametric uncertainty. Propagation of the uncertainty in the models and model parameters through groundwater modeling causes predictive uncertainty in model predictions (e.g., hydraulic head and flow). Parametric uncertainty within each model is assessed using Monte Carlo simulation, and model uncertainty is evaluated using the model averaging method. Two model-averaging techniques (on the basis of information criteria and GLUE) are discussed. This study shows that contribution of model uncertainty to predictive uncertainty is significantly larger than that of parametric uncertainty. For the recharge and geological components, uncertainty in the geological interpretations has more significant effect on model predictions than uncertainty in the recharge estimates. In addition, weighted residuals vary more for the different geological models than for different recharge models. Most of the calibrated observations are not important for discriminating between the alternative models, because their weighted residuals vary only slightly from one model to another.  相似文献   
97.
Groundwater models have evolved to encompass more aspects of the water cycle, but the incorporation of realistic boundary conditions representing surface water remains time-consuming and error-prone. We present two Python packages that robustly automate this process using readily available hydrography data as the primary input. SFRmaker creates input for the MODFLOW SFR package, while Linesink-maker creates linesink string input for the GFLOW analytic element program. These programs can reduce weeks or even months of manual effort to a few minutes of execution time, and carry the added advantages of reduced potential for error, improved reproducibility and facilitation of step-wise modeling through reduced dependency on a particular conceptual model or discretization. Two real-world examples at the county to multi-state scales are presented.  相似文献   
98.
We report two new XMM–Newton observations of PG1211+143 in 2007 December, again finding evidence for the fast outflow of highly ionized gas first detected in 2001. Stacking the new spectra with those from two earlier XMM–Newton observations reveals strong and broad emission lines of Fe  xxv and O  viii , indicating the fast outflow to be persistent and to have a large covering factor. This finding confirms a high mass rate for the ionized outflow in PG1211+143 and provides the first direct measurement of a wide angle, subrelativistic outflow from an active galactic nuclei (AGN) transporting mechanical energy with the potential to disrupt the growth of the host galaxy. We suggest PG1211+143 may be typical of an AGN in a rapid super-Eddington growth phase.  相似文献   
99.
100.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号